Extensions 1→N→G→Q→1 with N=C22 and Q=C3xSD16

Direct product G=NxQ with N=C22 and Q=C3xSD16
dρLabelID
C2xC6xSD1696C2xC6xSD16192,1459

Semidirect products G=N:Q with N=C22 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C22:(C3xSD16) = A4xSD16φ: C3xSD16/SD16C3 ⊆ Aut C22246C2^2:(C3xSD16)192,1015
C22:2(C3xSD16) = C3xC8:8D4φ: C3xSD16/C24C2 ⊆ Aut C2296C2^2:2(C3xSD16)192,898
C22:3(C3xSD16) = C3xC22:SD16φ: C3xSD16/C3xD4C2 ⊆ Aut C2248C2^2:3(C3xSD16)192,883
C22:4(C3xSD16) = C3xQ8:D4φ: C3xSD16/C3xQ8C2 ⊆ Aut C2296C2^2:4(C3xSD16)192,881

Non-split extensions G=N.Q with N=C22 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C22.1(C3xSD16) = C3xD8.C4φ: C3xSD16/C24C2 ⊆ Aut C22962C2^2.1(C3xSD16)192,165
C22.2(C3xSD16) = C3xC23.31D4φ: C3xSD16/C3xD4C2 ⊆ Aut C2248C2^2.2(C3xSD16)192,134
C22.3(C3xSD16) = C3xM5(2):C2φ: C3xSD16/C3xD4C2 ⊆ Aut C22484C2^2.3(C3xSD16)192,167
C22.4(C3xSD16) = C3xC8.17D4φ: C3xSD16/C3xD4C2 ⊆ Aut C22964C2^2.4(C3xSD16)192,168
C22.5(C3xSD16) = C3xC8.Q8φ: C3xSD16/C3xD4C2 ⊆ Aut C22484C2^2.5(C3xSD16)192,171
C22.6(C3xSD16) = C3xC23.47D4φ: C3xSD16/C3xD4C2 ⊆ Aut C2296C2^2.6(C3xSD16)192,916
C22.7(C3xSD16) = C3xC22.SD16φ: C3xSD16/C3xQ8C2 ⊆ Aut C2248C2^2.7(C3xSD16)192,133
C22.8(C3xSD16) = C3xC23.46D4φ: C3xSD16/C3xQ8C2 ⊆ Aut C2296C2^2.8(C3xSD16)192,914
C22.9(C3xSD16) = C3xC22.4Q16central extension (φ=1)192C2^2.9(C3xSD16)192,146
C22.10(C3xSD16) = C6xD4:C4central extension (φ=1)96C2^2.10(C3xSD16)192,847
C22.11(C3xSD16) = C6xQ8:C4central extension (φ=1)192C2^2.11(C3xSD16)192,848
C22.12(C3xSD16) = C6xC4.Q8central extension (φ=1)192C2^2.12(C3xSD16)192,858

׿
x
:
Z
F
o
wr
Q
<